April 26, 2025

When build­ing a large con­tex­tu­al data­base for real-time AI retrieval, using seman­tic embed­dings can great­ly sim­pli­fy man­ag­ing nuanced con­text. How­ev­er, direct­ly read­ing and writ­ing to embed­dings comes with impor­tant con­sid­er­a­tions that influ­ence prac­ti­cal­i­ty and fea­si­bil­i­ty. Here’s an analy­sis of the key aspects:


1. Can You Directly Read and Write Semantic Embeddings?

You can direct­ly write to and retrieve embed­dings stored in a data­base, but only under spe­cif­ic cir­cum­stances. Here’s what you need to under­stand:

Reading Embeddings

  • Direct Retrieval:
  • You can direct­ly retrieve seman­tic embed­dings from your vec­tor data­base for use in sim­i­lar­i­ty search­es or down­stream tasks.
  • For exam­ple, query­ing a vec­tor data­base (e.g., Pinecone, Weav­i­ate, FAISS):
vector = vector_db.get_vector(object_id="12345")
  • This is straight­for­ward because embed­dings are just arrays of floats stored in a data­base.

  • Usage:

  • These embed­dings are often used “as-is” for sim­i­lar­i­ty search­es or align­ment tasks but are not inher­ent­ly inter­pretable by humans.


Writing to Embeddings

  • Direct Updates:
  • You can­not “man­u­al­ly” mod­i­fy seman­tic embed­dings because they are gen­er­at­ed by neur­al net­works, encod­ing rela­tion­ships that depend on the under­ly­ing mod­el’s learned struc­ture.
  • Instead, to revise an object:
  • Update the raw data or attrib­ut­es (e.g., CAM lay­ers or meta­da­ta).
  • Reprocess the updat­ed data through the embed­ding mod­el to gen­er­ate a new embed­ding.
  • Replace the old embed­ding with the new one in your vec­tor data­base:
updated_vector = embedding_model.encode(updated_object)
vector_db.update_vector(object_id="12345", embedding=updated_vector)

2. Why Directly Modifying Embeddings Is Not Practical

  1. Non-Inter­pretable Nature:
  • Embed­dings are high-dimen­sion­al vec­tors (e.g., 768 or 1,536 dimen­sions), mak­ing it imprac­ti­cal to man­u­al­ly adjust them while main­tain­ing seman­tic coher­ence.
  1. Depen­dence on the Embed­ding Mod­el:
  • The mean­ing encod­ed in embed­dings is derived from the spe­cif­ic archi­tec­ture and train­ing of the mod­el (e.g., Ope­nAI embed­dings, Sen­tence-BERT).
  • Mod­i­fy­ing raw embed­dings could break the seman­tic integri­ty of the vec­tor space.
  1. Con­sis­ten­cy in Con­text:
  • Any direct mod­i­fi­ca­tion to embed­dings could cre­ate incon­sis­ten­cies in retrieval, as the rela­tion­ships between embed­dings depend on their posi­tion in the vec­tor space.

3. Recommended Workflow for Revising Objects

To main­tain nuanced con­text while ensur­ing the seman­tic integri­ty of embed­dings, fol­low this indi­rect work­flow:

Step 1: Retrieve the Object

  • Retrieve the orig­i­nal object (e.g., CAM obser­va­tion, ALO) and asso­ci­at­ed meta­da­ta.
object_data = database.get_object(object_id="12345")

Step 2: Edit the Attributes

  • Allow revi­sions to the objec­t’s attrib­ut­es (e.g., CAM lay­er descrip­tions, feed­back).
updated_object = object_data
updated_object["cam_layers"]["vision"]["description"] = "New vision description"

Step 3: Regenerate the Embedding

  • Use the embed­ding mod­el to regen­er­ate the seman­tic embed­ding for the updat­ed object.
updated_embedding = embedding_model.encode(updated_object)

Step 4: Update the Database

  • Replace the old embed­ding and attrib­ut­es in the data­base with the revised data.
vector_db.update_vector(object_id="12345", embedding=updated_embedding)
database.update_object(object_id="12345", data=updated_object)

4. Why Work with Semantic Embeddings for Context Management?

Seman­tic embed­dings are high­ly effec­tive for man­ag­ing nuanced con­text because:

  1. Effi­cient Retrieval:
  • Embed­dings enable fast, approx­i­mate sim­i­lar­i­ty search­es using tools like k‑Nearest Neigh­bors (k‑NN).
  • This is espe­cial­ly use­ful for query­ing relat­ed con­texts or objects in real time.
  1. Scal­a­bil­i­ty:
  • Embed­dings scale well with increas­ing data­base size, as they sim­pli­fy search­es into dis­tance cal­cu­la­tions (e.g., cosine sim­i­lar­i­ty).
  1. Gen­er­al­iza­tion:
  • Embed­dings cap­ture seman­tic rela­tion­ships, enabling robust retrieval even for unseen or slight­ly mod­i­fied queries.

5. Best Practices for Working with Embeddings

To opti­mize real-time AI retrieval while main­tain­ing the abil­i­ty to revise objects:

  1. Use a Two-Lay­er Stor­age Sys­tem:
  • Relational/Document Data­base: Store struc­tured objects (e.g., CAM obser­va­tions, ALOs).
  • Vec­tor Data­base: Store embed­dings for effi­cient sim­i­lar­i­ty search­es.
  • Both lay­ers are linked via a unique iden­ti­fi­er (e.g., object_id).
  1. Avoid Man­u­al Embed­ding Edits:
  • Always revise the orig­i­nal object and regen­er­ate embed­dings to ensure seman­tic con­sis­ten­cy.
  1. Keep Track of Ver­sions:
  • Main­tain a ver­sion his­to­ry for objects and embed­dings, allow­ing you to track changes and revert if need­ed.
  1. Batch Updates:
  • For large-scale revi­sions, update embed­dings in batch­es to reduce com­pu­ta­tion­al over­head.
  1. Reg­u­lar Retrain­ing:
  • If the under­ly­ing con­text or use case evolves sig­nif­i­cant­ly, con­sid­er retrain­ing or fine-tun­ing the embed­ding mod­el.

Closing note

  • While you can read and write embed­dings, direct­ly mod­i­fy­ing them is not prac­ti­cal or rec­om­mend­ed.
  • Instead, revise objects (e.g., CAM obser­va­tions) and regen­er­ate their embed­dings using the mod­el to ensure seman­tic coher­ence.
  • This work­flow ensures effi­cient, scal­able, and accu­rate man­age­ment of nuanced con­text in a real-time AI retrieval sys­tem.

John Deacon

John is a researcher and digitally independent practitioner working on aligned cognitive extension technology. Creative and technical writings are rooted in industry experience spanning instrumentation, automation and workflow engineering, systems dynamics, and strategic communications design.

View all posts