When build­ing a large con­tex­tu­al data­base for real-time AI retrieval, using seman­tic embed­dings can great­ly sim­pli­fy man­ag­ing nuanced con­text. How­ev­er, direct­ly read­ing and writ­ing to embed­dings comes with impor­tant con­sid­er­a­tions that influ­ence prac­ti­cal­i­ty and fea­si­bil­i­ty. Here’s an analy­sis of the key aspects:


1. Can You Directly Read and Write Semantic Embeddings?

You can direct­ly write to and retrieve embed­dings stored in a data­base, but only under spe­cif­ic cir­cum­stances. Here’s what you need to under­stand:

Reading Embeddings

  • Direct Retrieval:
  • You can direct­ly retrieve seman­tic embed­dings from your vec­tor data­base for use in sim­i­lar­i­ty search­es or down­stream tasks.
  • For exam­ple, query­ing a vec­tor data­base (e.g., Pinecone, Weav­i­ate, FAISS):
vector = vector_db.get_vector(object_id="12345")
  • This is straight­for­ward because embed­dings are just arrays of floats stored in a data­base.

  • Usage:

  • These embed­dings are often used “as-is” for sim­i­lar­i­ty search­es or align­ment tasks but are not inher­ent­ly inter­pretable by humans.


Writing to Embeddings

  • Direct Updates:
  • You can­not “man­u­al­ly” mod­i­fy seman­tic embed­dings because they are gen­er­at­ed by neur­al net­works, encod­ing rela­tion­ships that depend on the under­ly­ing mod­el’s learned struc­ture.
  • Instead, to revise an object:
  • Update the raw data or attrib­ut­es (e.g., CAM lay­ers or meta­da­ta).
  • Reprocess the updat­ed data through the embed­ding mod­el to gen­er­ate a new embed­ding.
  • Replace the old embed­ding with the new one in your vec­tor data­base:
updated_vector = embedding_model.encode(updated_object)
vector_db.update_vector(object_id="12345", embedding=updated_vector)

2. Why Directly Modifying Embeddings Is Not Practical

  1. Non-Inter­pretable Nature:
  • Embed­dings are high-dimen­sion­al vec­tors (e.g., 768 or 1,536 dimen­sions), mak­ing it imprac­ti­cal to man­u­al­ly adjust them while main­tain­ing seman­tic coher­ence.
  1. Depen­dence on the Embed­ding Mod­el:
  • The mean­ing encod­ed in embed­dings is derived from the spe­cif­ic archi­tec­ture and train­ing of the mod­el (e.g., Ope­nAI embed­dings, Sen­tence-BERT).
  • Mod­i­fy­ing raw embed­dings could break the seman­tic integri­ty of the vec­tor space.
  1. Con­sis­ten­cy in Con­text:
  • Any direct mod­i­fi­ca­tion to embed­dings could cre­ate incon­sis­ten­cies in retrieval, as the rela­tion­ships between embed­dings depend on their posi­tion in the vec­tor space.

3. Recommended Workflow for Revising Objects

To main­tain nuanced con­text while ensur­ing the seman­tic integri­ty of embed­dings, fol­low this indi­rect work­flow:

Step 1: Retrieve the Object

  • Retrieve the orig­i­nal object (e.g., CAM obser­va­tion, ALO) and asso­ci­at­ed meta­da­ta.
object_data = database.get_object(object_id="12345")

Step 2: Edit the Attributes

  • Allow revi­sions to the objec­t’s attrib­ut­es (e.g., CAM lay­er descrip­tions, feed­back).
updated_object = object_data
updated_object["cam_layers"]["vision"]["description"] = "New vision description"

Step 3: Regenerate the Embedding

  • Use the embed­ding mod­el to regen­er­ate the seman­tic embed­ding for the updat­ed object.
updated_embedding = embedding_model.encode(updated_object)

Step 4: Update the Database

  • Replace the old embed­ding and attrib­ut­es in the data­base with the revised data.
vector_db.update_vector(object_id="12345", embedding=updated_embedding)
database.update_object(object_id="12345", data=updated_object)

4. Why Work with Semantic Embeddings for Context Management?

Seman­tic embed­dings are high­ly effec­tive for man­ag­ing nuanced con­text because:

  1. Effi­cient Retrieval:
  • Embed­dings enable fast, approx­i­mate sim­i­lar­i­ty search­es using tools like k‑Nearest Neigh­bors (k‑NN).
  • This is espe­cial­ly use­ful for query­ing relat­ed con­texts or objects in real time.
  1. Scal­a­bil­i­ty:
  • Embed­dings scale well with increas­ing data­base size, as they sim­pli­fy search­es into dis­tance cal­cu­la­tions (e.g., cosine sim­i­lar­i­ty).
  1. Gen­er­al­iza­tion:
  • Embed­dings cap­ture seman­tic rela­tion­ships, enabling robust retrieval even for unseen or slight­ly mod­i­fied queries.

5. Best Practices for Working with Embeddings

To opti­mize real-time AI retrieval while main­tain­ing the abil­i­ty to revise objects:

  1. Use a Two-Lay­er Stor­age Sys­tem:
  • Relational/Document Data­base: Store struc­tured objects (e.g., CAM obser­va­tions, ALOs).
  • Vec­tor Data­base: Store embed­dings for effi­cient sim­i­lar­i­ty search­es.
  • Both lay­ers are linked via a unique iden­ti­fi­er (e.g., object_id).
  1. Avoid Man­u­al Embed­ding Edits:
  • Always revise the orig­i­nal object and regen­er­ate embed­dings to ensure seman­tic con­sis­ten­cy.
  1. Keep Track of Ver­sions:
  • Main­tain a ver­sion his­to­ry for objects and embed­dings, allow­ing you to track changes and revert if need­ed.
  1. Batch Updates:
  • For large-scale revi­sions, update embed­dings in batch­es to reduce com­pu­ta­tion­al over­head.
  1. Reg­u­lar Retrain­ing:
  • If the under­ly­ing con­text or use case evolves sig­nif­i­cant­ly, con­sid­er retrain­ing or fine-tun­ing the embed­ding mod­el.

Closing note

  • While you can read and write embed­dings, direct­ly mod­i­fy­ing them is not prac­ti­cal or rec­om­mend­ed.
  • Instead, revise objects (e.g., CAM obser­va­tions) and regen­er­ate their embed­dings using the mod­el to ensure seman­tic coher­ence.
  • This work­flow ensures effi­cient, scal­able, and accu­rate man­age­ment of nuanced con­text in a real-time AI retrieval sys­tem.

John Deacon

John is a researcher and practitioner committed to building aligned, authentic digital representations. Drawing from experience in digital design, systems thinking, and strategic development, John brings a unique ability to bridge technical precision with creative vision, solving complex challenges in situational dynamics with aims set at performance outcomes.

View all posts